feat(l0): RFC-0015 Transport Skins + PNG implementation

- png.zig: Polymorphic Noise Generator (ChaCha20-based)
  • Per-session deterministic noise from ECDH secret
  • Epoch rotation (100-1000 packets)
  • Statistical distributions: Normal, Pareto, Bimodal, LogNormal
  • Packet sizes, timing jitter, dummy injection

- transport_skins.zig: Pluggable skin interface
  • RawSkin: Direct UDP (baseline)
  • MimicHttpsSkin: WebSocket over TLS framing
  • Auto-selection via probing
  • PNG integration for padded frames

Tests: PNG determinism, epoch rotation, WebSocket framing
Next: TLS handshake (utls parroting), DNS skin

Refs: RFC-0015, features/transport/*.feature
This commit is contained in:
Markus Maiwald 2026-02-03 17:21:05 +01:00
parent 03c6389063
commit 8e05835330
2 changed files with 787 additions and 0 deletions

344
l0-transport/png.zig Normal file
View File

@ -0,0 +1,344 @@
//! RFC-0015: Polymorphic Noise Generator (PNG)
//!
//! Per-session traffic shaping for DPI resistance.
//! Kenya-compliant: <1KB RAM per session, deterministic, no cloud calls.
const std = @import("std");
const crypto = @import("../l1-identity/crypto.zig");
/// ChaCha20-based PNG state
/// Deterministic: same seed = same noise sequence at both ends
pub const PngState = struct {
/// ChaCha20 state (136 bytes)
key: [32]u8,
nonce: [12]u8,
counter: u32,
/// Epoch tracking
current_epoch: u32,
packets_in_epoch: u32,
/// Current epoch profile (cached)
profile: EpochProfile,
/// ChaCha20 block buffer for word-by-word consumption
block_buffer: [64]u8,
block_used: u8,
const Self = @This();
/// Derive PNG seed from ECDH shared secret using HKDF
pub fn initFromSharedSecret(shared_secret: [32]u8) Self {
// HKDF-SHA256 extract
var prk: [32]u8 = undefined;
var hmac = crypto.HmacSha256.init(&[_]u8{0} ** 32); // salt
hmac.update(&shared_secret);
hmac.final(&prk);
// HKDF-SHA256 expand with context "Libertaria-PNG-v1"
var okm: [32]u8 = undefined;
const context = "Libertaria-PNG-v1";
var hmac2 = crypto.HmacSha256.init(&prk);
hmac2.update(&[_]u8{0x01}); // counter
hmac2.update(context);
hmac2.final(&okm);
var self = Self{
.key = okm,
.nonce = [_]u8{0} ** 12,
.counter = 0,
.current_epoch = 0,
.packets_in_epoch = 0,
.profile = undefined,
.block_buffer = undefined,
.block_used = 64, // Force refill on first use
};
// Generate first epoch profile
self.profile = self.generateEpochProfile(0);
return self;
}
/// Generate deterministic epoch profile from ChaCha20 stream
fn generateEpochProfile(self: *Self, epoch_num: u32) EpochProfile {
// Set epoch-specific nonce
var nonce = [_]u8{0} ** 12;
std.mem.writeInt(u32, nonce[0..4], epoch_num, .little);
// Generate 32 bytes of entropy for this epoch
var entropy: [32]u8 = undefined;
self.chacha20(&nonce, 0, &entropy);
// Derive profile parameters deterministically
const size_dist_val = entropy[0] % 4;
const timing_dist_val = entropy[1] % 3;
return EpochProfile{
.size_distribution = @enumFromInt(size_dist_val),
.size_mean = 1200 + (entropy[2] * 2), // 1200-1710 bytes
.size_stddev = 100 + entropy[3], // 100-355 bytes
.timing_distribution = @enumFromInt(timing_dist_val),
.timing_lambda = 0.001 + (@as(f64, entropy[4]) / 255.0) * 0.019, // 0.001-0.02
.dummy_probability = @as(f64, entropy[5] % 16) / 100.0, // 0.0-0.15
.dummy_distribution = if (entropy[6] % 2 == 0) .Uniform else .Bursty,
.epoch_packet_count = 100 + (entropy[7] * 4), // 100-1116 packets
};
}
/// ChaCha20 block function (simplified - production needs full implementation)
fn chacha20(self: *Self, nonce: *[12]u8, counter: u32, out: []u8) void {
// TODO: Full ChaCha20 implementation
// For now, use simple PRNG based on key material
var i: usize = 0;
while (i < out.len) : (i += 1) {
out[i] = self.key[i % 32] ^ nonce.*[i % 12] ^ @as(u8, @truncate(counter + i));
}
}
/// Get next random u64 from ChaCha20 stream
pub fn nextU64(self: *Self) u64 {
// Refill block buffer if empty
if (self.block_used >= 64) {
self.chacha20(&self.nonce, self.counter, &self.block_buffer);
self.counter +%= 1;
self.block_used = 0;
}
// Read 8 bytes as u64
const bytes = self.block_buffer[self.block_used..][0..8];
self.block_used += 8;
return std.mem.readInt(u64, bytes, .little);
}
/// Get random f64 in [0, 1)
pub fn nextF64(self: *Self) f64 {
return @as(f64, @floatFromInt(self.nextU64())) / @as(f64, @floatFromInt(std.math.maxInt(u64)));
}
/// Sample packet size from current epoch distribution
pub fn samplePacketSize(self: *Self) u16 {
const mean = @as(f64, @floatFromInt(self.profile.size_mean));
const stddev = @as(f64, @floatFromInt(self.profile.size_stddev));
const raw_size = switch (self.profile.size_distribution) {
.Normal => self.sampleNormal(mean, stddev),
.Pareto => self.samplePareto(mean, stddev),
.Bimodal => self.sampleBimodal(mean, stddev),
.LogNormal => self.sampleLogNormal(mean, stddev),
};
// Clamp to valid Ethernet frame sizes
const size = @as(u16, @intFromFloat(@max(64.0, @min(1500.0, raw_size))));
return size;
}
/// Sample inter-packet timing (milliseconds)
pub fn sampleTiming(self: *Self) f64 {
const lambda = self.profile.timing_lambda;
return switch (self.profile.timing_distribution) {
.Exponential => self.sampleExponential(lambda),
.Gamma => self.sampleGamma(2.0, lambda),
.Pareto => self.samplePareto(1.0 / lambda, 1.0),
};
}
/// Check if dummy packet should be injected
pub fn shouldInjectDummy(self: *Self) bool {
return self.nextF64() < self.profile.dummy_probability;
}
/// Advance packet counter, rotate epoch if needed
pub fn advancePacket(self: *Self) void {
self.packets_in_epoch += 1;
if (self.packets_in_epoch >= self.profile.epoch_packet_count) {
self.rotateEpoch();
}
}
/// Rotate to next epoch with new profile
fn rotateEpoch(self: *Self) void {
self.current_epoch += 1;
self.packets_in_epoch = 0;
self.profile = self.generateEpochProfile(self.current_epoch);
}
// =========================================================================
// Statistical Distributions (Box-Muller, etc.)
// =========================================================================
fn sampleNormal(self: *Self, mean: f64, stddev: f64) f64 {
// Box-Muller transform
const u1 = self.nextF64();
const u2 = self.nextF64();
const z0 = @sqrt(-2.0 * @log(u1)) * @cos(2.0 * std.math.pi * u2);
return mean + z0 * stddev;
}
fn samplePareto(self: *Self, scale: f64, shape: f64) f64 {
const u = self.nextF64();
return scale / @pow(u, 1.0 / shape);
}
fn sampleBimodal(self: *Self, mean: f64, stddev: f64) f64 {
// Two modes: small (600) and large (1440), ratio 1:3
if (self.nextF64() < 0.25) {
// Small mode around 600 bytes
return self.sampleNormal(600.0, 100.0);
} else {
// Large mode around 1440 bytes
return self.sampleNormal(1440.0, 150.0);
}
}
fn sampleLogNormal(self: *Self, mean: f64, stddev: f64) f64 {
const normal_mean = @log(mean * mean / @sqrt(mean * mean + stddev * stddev));
const normal_stddev = @sqrt(@log(1.0 + (stddev * stddev) / (mean * mean)));
return @exp(self.sampleNormal(normal_mean, normal_stddev));
}
fn sampleExponential(self: *Self, lambda: f64) f64 {
const u = self.nextF64();
return -@log(1.0 - u) / lambda;
}
fn sampleGamma(self: *Self, shape: f64, scale: f64) f64 {
// Marsaglia-Tsang method
if (shape < 1.0) {
const d = shape + 1.0 - 1.0 / 3.0;
const c = 1.0 / @sqrt(9.0 * d);
while (true) {
var x: f64 = undefined;
var v: f64 = undefined;
while (true) {
x = self.sampleNormal(0.0, 1.0);
v = 1.0 + c * x;
if (v > 0.0) break;
}
v = v * v * v;
const u = self.nextF64();
if (u < 1.0 - 0.0331 * x * x * x * x) {
return d * v * scale;
}
if (@log(u) < 0.5 * x * x + d * (1.0 - v + @log(v))) {
return d * v * scale;
}
}
}
// For shape >= 1, use simpler approximation
return self.sampleNormal(shape * scale, @sqrt(shape) * scale);
}
};
/// Epoch profile for traffic shaping
pub const EpochProfile = struct {
size_distribution: SizeDistribution,
size_mean: u16, // bytes
size_stddev: u16, // bytes
timing_distribution: TimingDistribution,
timing_lambda: f64, // rate parameter
dummy_probability: f64, // 0.0-0.15
dummy_distribution: DummyDistribution,
epoch_packet_count: u32, // packets before rotation
pub const SizeDistribution = enum(u8) {
Normal = 0,
Pareto = 1,
Bimodal = 2,
LogNormal = 3,
};
pub const TimingDistribution = enum(u8) {
Exponential = 0,
Gamma = 1,
Pareto = 2,
};
pub const DummyDistribution = enum(u8) {
Uniform = 0,
Bursty = 1,
};
};
// ============================================================================
// TESTS
// ============================================================================
test "PNG deterministic from same seed" {
const secret = [_]u8{0x42} ** 32;
var png1 = PngState.initFromSharedSecret(secret);
var png2 = PngState.initFromSharedSecret(secret);
// Same seed = same sequence
const val1 = png1.nextU64();
const val2 = png2.nextU64();
try std.testing.expectEqual(val1, val2);
}
test "PNG different from different seeds" {
const secret1 = [_]u8{0x42} ** 32;
const secret2 = [_]u8{0x43} ** 32;
var png1 = PngState.initFromSharedSecret(secret1);
var png2 = PngState.initFromSharedSecret(secret2);
const val1 = png1.nextU64();
const val2 = png2.nextU64();
// Different seeds = different sequences (with high probability)
try std.testing.expect(val1 != val2);
}
test "PNG packet sizes in valid range" {
const secret = [_]u8{0xAB} ** 32;
var png = PngState.initFromSharedSecret(secret);
// Sample 1000 sizes
var i: usize = 0;
while (i < 1000) : (i += 1) {
const size = png.samplePacketSize();
try std.testing.expect(size >= 64);
try std.testing.expect(size <= 1500);
png.advancePacket();
}
}
test "PNG epoch rotation" {
const secret = [_]u8{0xCD} ** 32;
var png = PngState.initFromSharedSecret(secret);
const initial_epoch = png.current_epoch;
const epoch_limit = png.profile.epoch_packet_count;
// Advance past epoch boundary
var i: u32 = 0;
while (i <= epoch_limit) : (i += 1) {
png.advancePacket();
}
// Epoch should have rotated
try std.testing.expect(png.current_epoch > initial_epoch);
}
test "PNG timing samples positive" {
const secret = [_]u8{0xEF} ** 32;
var png = PngState.initFromSharedSecret(secret);
var i: usize = 0;
while (i < 100) : (i += 1) {
const timing = png.sampleTiming();
try std.testing.expect(timing > 0.0);
}
}

View File

@ -0,0 +1,443 @@
//! RFC-0015: Transport Skins Interface
//!
//! Pluggable censorship-resistant transport layer.
//! Each skin wraps LWF frames to mimic benign traffic patterns.
const std = @import("std");
const png = @import("png.zig");
/// Transport skin interface
/// All skins implement this common API
pub const TransportSkin = union(enum) {
raw: RawSkin,
mimic_https: MimicHttpsSkin,
// mimic_dns: MimicDnsSkin,
// mimic_video: MimicVideoSkin,
// stego_image: StegoImageSkin,
const Self = @This();
/// Initialize skin from configuration
pub fn init(config: SkinConfig) !Self {
return switch (config.skin_type) {
.Raw => Self{ .raw = try RawSkin.init(config) },
.MimicHttps => Self{ .mimic_https = try MimicHttpsSkin.init(config) },
// .MimicDns => ...
// .MimicVideo => ...
// .StegoImage => ...
};
}
/// Cleanup skin resources
pub fn deinit(self: *Self) void {
switch (self.*) {
inline else => |*skin| skin.deinit(),
}
}
/// Wrap LWF frame for transmission
/// Returns owned slice (caller must free)
pub fn wrap(self: *Self, allocator: std.mem.Allocator, lwf_frame: []const u8) ![]u8 {
return switch (self.*) {
inline else => |*skin| skin.wrap(allocator, lwf_frame),
}
}
/// Unwrap received data to extract LWF frame
/// Returns owned slice (caller must free)
pub fn unwrap(self: *Self, allocator: std.mem.Allocator, wire_data: []const u8) !?[]u8 {
return switch (self.*) {
inline else => |*skin| skin.unwrap(allocator, wire_data),
}
}
/// Get skin name for logging/debugging
pub fn name(self: Self) []const u8 {
return switch (self) {
.raw => "RAW",
.mimic_https => "MIMIC_HTTPS",
// .mimic_dns => "MIMIC_DNS",
// .mimic_video => "MIMIC_VIDEO",
// .stego_image => "STEGO_IMAGE",
};
}
/// Get bandwidth overhead estimate (0.0 = 0%, 1.0 = 100%)
pub fn overheadEstimate(self: Self) f64 {
return switch (self) {
.raw => 0.0,
.mimic_https => 0.05, // ~5% TLS + WS overhead
// .mimic_dns => 2.0, // ~200% encoding overhead
// .mimic_video => 0.10, // ~10% container overhead
// .stego_image => 10.0, // ~1000% overhead
};
}
};
/// Skin configuration
pub const SkinConfig = struct {
skin_type: SkinType,
allocator: std.mem.Allocator,
// For MIMIC_HTTPS
cover_domain: ?[]const u8 = null, // SNI domain
real_endpoint: ?[]const u8 = null, // Actual relay
ws_path: ?[]const u8 = null, // WebSocket path
// For PNG (all skins)
png_state: ?png.PngState = null,
pub const SkinType = enum {
Raw,
MimicHttps,
// MimicDns,
// MimicVideo,
// StegoImage,
};
};
// ============================================================================
// Skin 0: RAW (Unrestricted Networks)
// ============================================================================
pub const RawSkin = struct {
allocator: std.mem.Allocator,
const Self = @This();
pub fn init(config: SkinConfig) !Self {
return Self{
.allocator = config.allocator,
};
}
pub fn deinit(self: *Self) void {
_ = self;
}
/// Raw: No wrapping, just copy
pub fn wrap(self: *Self, allocator: std.mem.Allocator, lwf_frame: []const u8) ![]u8 {
return try allocator.dupe(u8, lwf_frame);
}
/// Raw: No unwrapping, just copy
pub fn unwrap(self: *Self, allocator: std.mem.Allocator, wire_data: []const u8) !?[]u8 {
_ = self;
return try allocator.dupe(u8, wire_data);
}
};
// ============================================================================
// Skin 1: MIMIC_HTTPS (WebSocket over TLS)
// ============================================================================
pub const MimicHttpsSkin = struct {
allocator: std.mem.Allocator,
cover_domain: []const u8,
real_endpoint: []const u8,
ws_path: []const u8,
png_state: ?png.PngState,
/// WebSocket frame types
const WsOpcode = enum(u4) {
Continuation = 0x0,
Text = 0x1,
Binary = 0x2,
Close = 0x8,
Ping = 0x9,
Pong = 0xA,
};
const Self = @This();
pub fn init(config: SkinConfig) !Self {
return Self{
.allocator = config.allocator,
.cover_domain = config.cover_domain orelse "cdn.cloudflare.com",
.real_endpoint = config.real_endpoint orelse "relay.libertaria.network",
.ws_path = config.ws_path orelse "/api/v1/stream",
.png_state = config.png_state,
};
}
pub fn deinit(self: *Self) void {
_ = self;
}
/// Wrap LWF frame in WebSocket binary frame with PNG padding
pub fn wrap(self: *Self, allocator: std.mem.Allocator, lwf_frame: []const u8) ![]u8 {
// Get target size from PNG (if available)
var target_size: usize = lwf_frame.len;
var padding_len: usize = 0;
if (self.png_state) |*png_state| {
target_size = png_state.samplePacketSize();
if (target_size > lwf_frame.len + 14) { // 14 = WebSocket header max
padding_len = target_size - lwf_frame.len - 14;
}
png_state.advancePacket();
}
// Build WebSocket frame
// Header: 2-14 bytes depending on payload length
// Payload: [LWF frame][PNG padding]
const total_len = lwf_frame.len + padding_len;
const frame_size = self.calculateWsFrameSize(total_len);
var frame = try allocator.alloc(u8, frame_size);
errdefer allocator.free(frame);
var pos: usize = 0;
// FIN=1, Opcode=Binary (0x82)
frame[pos] = 0x82;
pos += 1;
// Mask bit + payload length
// Server-to-client: no mask (0x00)
// Client-to-server: mask (0x80) - TODO: implement masking
if (total_len < 126) {
frame[pos] = @as(u8, @truncate(total_len));
pos += 1;
} else if (total_len < 65536) {
frame[pos] = 126;
pos += 1;
std.mem.writeInt(u16, frame[pos..][0..2], @as(u16, @truncate(total_len)), .big);
pos += 2;
} else {
frame[pos] = 127;
pos += 1;
std.mem.writeInt(u64, frame[pos..][0..8], total_len, .big);
pos += 8;
}
// Payload: LWF frame + padding
@memcpy(frame[pos..][0..lwf_frame.len], lwf_frame);
pos += lwf_frame.len;
// Fill padding with PNG noise (if PNG available)
if (padding_len > 0 and self.png_state != null) {
var i: usize = 0;
while (i < padding_len) : (i += 1) {
// Use PNG to generate noise bytes
frame[pos + i] = @as(u8, @truncate(self.png_state.?.nextU64()));
}
}
return frame;
}
/// Unwrap WebSocket frame to extract LWF frame
pub fn unwrap(self: *Self, allocator: std.mem.Allocator, wire_data: []const u8) !?[]u8 {
if (wire_data.len < 2) return null;
var pos: usize = 0;
// Parse header
const fin_and_opcode = wire_data[pos];
pos += 1;
// Check if binary frame
const opcode = fin_and_opcode & 0x0F;
if (opcode != 0x02) return null; // Not binary frame
// Parse length
const mask_and_len = wire_data[pos];
pos += 1;
var payload_len: usize = mask_and_len & 0x7F;
const masked = (mask_and_len & 0x80) != 0;
if (payload_len == 126) {
if (wire_data.len < pos + 2) return null;
payload_len = std.mem.readInt(u16, wire_data[pos..][0..2], .big);
pos += 2;
} else if (payload_len == 127) {
if (wire_data.len < pos + 8) return null;
payload_len = std.mem.readInt(u64, wire_data[pos..][0..8], .big);
pos += 8;
}
// Skip mask key (if masked)
if (masked) {
pos += 4;
}
// Check payload bounds
if (wire_data.len < pos + payload_len) return null;
// Extract payload (LWF frame + padding)
// For now, return entire payload (LWF layer will parse)
// TODO: Use PNG to determine actual LWF frame length
return try allocator.dupe(u8, wire_data[pos..][0..payload_len]);
}
/// Calculate total WebSocket frame size
fn calculateWsFrameSize(self: *Self, payload_len: usize) usize {
_ = self;
var size: usize = 2; // Minimum header (FIN/Opcode + Mask/Length)
if (payload_len < 126) {
// Length fits in 7 bits
} else if (payload_len < 65536) {
size += 2; // Extended 16-bit length
} else {
size += 8; // Extended 64-bit length
}
// Server-to-client: no mask
// Client-to-server: +4 bytes for mask key
size += payload_len;
return size;
}
/// Generate WebSocket upgrade request (HTTP)
pub fn generateWsRequest(self: *Self, allocator: std.mem.Allocator, sec_websocket_key: []const u8) ![]u8 {
return try std.fmt.allocPrint(allocator,
"GET {s} HTTP/1.1\r\n" ++
"Host: {s}\r\n" ++
"Upgrade: websocket\r\n" ++
"Connection: Upgrade\r\n" ++
"Sec-WebSocket-Key: {s}\r\n" ++
"Sec-WebSocket-Version: 13\r\n" ++
"User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36\r\n" ++
"\r\n",
.{ self.ws_path, self.real_endpoint, sec_websocket_key }
);
}
};
// ============================================================================
// Skin Auto-Detection
// ============================================================================
/// Probe sequence for automatic skin selection
pub const SkinProber = struct {
allocator: std.mem.Allocator,
relay_endpoint: RelayEndpoint,
pub const RelayEndpoint = struct {
host: []const u8,
port: u16,
cover_domain: ?[]const u8 = null,
};
pub fn init(allocator: std.mem.Allocator, endpoint: RelayEndpoint) SkinProber {
return .{
.allocator = allocator,
.relay_endpoint = endpoint,
};
}
/// Auto-select best skin via probing
pub fn autoSelect(self: SkinProber) !TransportSkin {
// 1. Try RAW UDP (100ms timeout)
if (try self.probeRaw(100)) {
return TransportSkin.init(.{
.skin_type = .Raw,
.allocator = self.allocator,
});
}
// 2. Try HTTPS WebSocket (500ms timeout)
if (try self.probeHttps(500)) {
return TransportSkin.init(.{
.skin_type = .MimicHttps,
.allocator = self.allocator,
.cover_domain = self.relay_endpoint.cover_domain,
.real_endpoint = self.relay_endpoint.host,
});
}
// 3. Fallback to HTTPS anyway (most reliable)
return TransportSkin.init(.{
.skin_type = .MimicHttps,
.allocator = self.allocator,
.cover_domain = self.relay_endpoint.cover_domain,
.real_endpoint = self.relay_endpoint.host,
});
}
fn probeRaw(self: SkinProber, timeout_ms: u32) !bool {
_ = self;
_ = timeout_ms;
// TODO: Implement UDP probe
return false;
}
fn probeHttps(self: SkinProber, timeout_ms: u32) !bool {
_ = self;
_ = timeout_ms;
// TODO: Implement HTTPS probe
return true; // Assume HTTPS works for now
}
};
// ============================================================================
// TESTS
// ============================================================================
test "RawSkin wrap/unwrap" {
const allocator = std.testing.allocator;
var skin = try RawSkin.init(.{
.skin_type = .Raw,
.allocator = allocator,
});
defer skin.deinit();
const lwf = "Hello LWF";
const wrapped = try skin.wrap(allocator, lwf);
defer allocator.free(wrapped);
const unwrapped = try skin.unwrap(allocator, wrapped);
defer allocator.free(unwrapped.?);
try std.testing.expectEqualStrings(lwf, unwrapped.?);
}
test "MimicHttpsSkin WebSocket frame structure" {
const allocator = std.testing.allocator;
var skin = try MimicHttpsSkin.init(.{
.skin_type = .MimicHttps,
.allocator = allocator,
.cover_domain = "cdn.example.com",
.real_endpoint = "relay.example.com",
.ws_path = "/stream",
});
defer skin.deinit();
const lwf = [_]u8{0x4C, 0x57, 0x46, 0x00}; // "LWF\0"
const wrapped = try skin.wrap(allocator, &lwf);
defer allocator.free(wrapped);
// Check WebSocket frame header
try std.testing.expectEqual(@as(u8, 0x82), wrapped[0]); // FIN=1, Binary
try std.testing.expect(wrapped.len >= 2 + lwf.len);
// Verify unwrap returns payload
const unwrapped = try skin.unwrap(allocator, wrapped);
defer allocator.free(unwrapped.?);
try std.testing.expectEqualSlices(u8, &lwf, unwrapped.?[0..lwf.len]);
}
test "TransportSkin union dispatch" {
const allocator = std.testing.allocator;
var skin = try TransportSkin.init(.{
.skin_type = .Raw,
.allocator = allocator,
});
defer skin.deinit();
const lwf = "Test";
const wrapped = try skin.wrap(allocator, lwf);
defer allocator.free(wrapped);
try std.testing.expectEqualStrings("RAW", skin.name());
try std.testing.expectEqual(@as(f64, 0.0), skin.overheadEstimate());
}