# NexFS - Native Zig Flash Filesystem for NexusOS > **The sovereign flash filesystem for Libertaria nodes and embedded devices** [![License: LSL-1.0](https://img.shields.io/badge/License-LSL--1.0-blue.svg)](https://opensource.org/licenses/LSL-1.0) [![Zig](https://img.shields.io/badge/Zig-0.13+-orange.svg)](https://ziglang.org) [![Status: Alpha](https://img.shields.io/badge/Status-Alpha-yellow.svg)](https://git.sovereign-society.org/nexus/nexfs) --- ## What is NexFS? **NexFS** is a native Zig implementation of a flash-aware filesystem designed for **Libertaria nodes** and **embedded sovereign devices**. It provides reliable, wear-leveling-aware storage for resource-constrained environments where data integrity and flash longevity are critical. ### Key Design Goals - **Flash-First Architecture**: Optimized for raw NAND/NOR flash with wear leveling awareness - **Zero Dynamic Allocation**: All buffers provided by caller - no runtime memory allocation - **Platform Agnostic**: Works with any flash HAL via callback interface - **Data Integrity**: CRC32C checksums on all metadata structures - **Sovereign by Design**: No external dependencies, no vendor lock-in, fully auditable --- ## Use Cases ### 1. Libertaria Mesh Nodes **Primary Use Case**: Storage layer for Libertaria Capsule nodes ``` ┌─────────────────────────────────────────┐ │ Libertaria Capsule Node │ │ │ │ ┌─────────────────────────────────┐ │ │ │ L3 Gossip (QVL Trust Edges) │ │ │ └─────────────────────────────────┘ │ │ ┌─────────────────────────────────┐ │ │ │ L2 Session (Noise Handshakes) │ │ │ └─────────────────────────────────┘ │ │ ┌─────────────────────────────────┐ │ │ │ L1 Identity (SoulKeys) │ │ │ └─────────────────────────────────┘ │ │ ┌─────────────────────────────────┐ │ │ │ NexFS (Persistent Storage) │◄──┘ │ └─────────────────────────────────┘ │ ┌─────────────────────────────────┐ │ │ Raw Flash (NAND/NOR/SPI) │ │ └─────────────────────────────────┘ └─────────────────────────────────────────┘ ``` **Why NexFS for Libertaria?** - **Persistence**: SoulKeys, peer tables, trust graphs survive reboots - **Integrity**: CRC32C ensures metadata hasn't been corrupted - **Wear Leveling**: Tracks erase counts to maximize flash lifespan - **Minimal Footprint**: Zero allocation design fits embedded constraints - **Fast Boot**: No journal replay, direct mount from superblock ### 2. Embedded Sovereign Devices **Secondary Use Case**: IoT devices, Raspberry Pi, ESP32, microcontrollers **Examples:** - **Solar Monitor Nodes**: Store sensor readings, config, firmware updates - **Weather Network**: Log environmental data locally before sync - **Pager Devices**: Message queue persistence - **Home Automation**: Device state, automation rules, logs **Why NexFS for Embedded?** - **Raw Flash Support**: Works directly with SPI flash, no FTL layer needed - **Power-Loss Resilience**: Dual superblock backup survives sudden power loss - **Deterministic**: Fixed buffer sizes, predictable memory usage - **No OS Dependencies**: Works bare-metal or with any RTOS --- ## Architecture ### On-Disk Layout ``` ┌─────────────────────────────────────────────┐ │ Block 0: Primary Superblock (128 bytes) │ ├─────────────────────────────────────────────┤ │ Block 1: Backup Superblock (128 bytes) │ ├─────────────────────────────────────────────┤ │ Blocks 2-N: Block Allocation Map (BAM) │ │ - Tracks allocation status │ │ - Records erase counts (wear leveling) │ │ - Bad block marking │ ├─────────────────────────────────────────────┤ │ Blocks N+1-N+4: Inode Table │ │ - File/directory metadata │ │ - Inode IDs 1-128 │ ├─────────────────────────────────────────────┤ │ Blocks N+5+: Data Blocks │ │ - File/directory contents │ │ - Wear-leveled allocation │ └─────────────────────────────────────────────┘ ``` ### Key Components **1. Superblock** - Magic number: `0x4E455846` ("NEXF") - Generation counter for crash recovery - Mount count for health monitoring - CRC32C checksum for integrity **2. Block Allocation Map (BAM)** - Per-block metadata: allocated, bad, reserved, needs_erase - Erase count tracking for wear leveling - Generation counter for block age **3. Inode Table** - File/directory metadata - Supports: Regular, Directory, Symlink, Device nodes - Max filename: 255 characters **4. Flash Interface** ```zig pub const FlashInterface = struct { read: *const fn (ctx: *anyopaque, addr: u64, buffer: []u8) NexFSError!usize, write: *const fn (ctx: *anyopaque, addr: u64, buffer: []const u8) NexFSError!void, erase: *const fn (ctx: *anyopaque, block_addr: BlockAddr) NexFSError!void, sync: *const fn (ctx: *anyopaque) NexFSError!void, }; ``` --- ## Features ### ✅ Implemented (v0.1.0) - **Format/Initialization**: `format()` creates fresh filesystem - **Superblock Management**: Primary + backup with checksums - **Block Allocation**: BAM-based allocation with wear tracking - **Inode Operations**: Create, read, write, delete - **Directory Operations**: mkdir, rmdir, readdir, lookup - **File Operations**: open, read, write, close, seek - **Path Resolution**: Full path support (`/path/to/file`) - **Checksum Verification**: CRC32C on all metadata - **Zero Allocation**: All buffers provided by caller ### 🚧 Planned (Future Versions) - **Wear Leveling Algorithm**: Active block rotation based on erase counts - **Bad Block Management**: Automatic bad block detection and marking - **Defragmentation**: Reclaim fragmented data blocks - **Snapshots**: Point-in-time filesystem snapshots - **Compression**: Optional LZ4 compression for data blocks - **Encryption**: Optional XChaCha20-Poly1305 encryption --- ## Quick Start ### Installation Add NexFS to your `build.zig.zon`: ```zig .{ .name = "your-project", .version = "0.1.0", .dependencies = .{ .nexfs = .{ .url = "https://git.sovereign-society.org/nexus/nexfs/archive/main.tar.gz", .hash = "...", }, }, } ``` ### Example: Basic Usage ```zig const std = @import("std"); const nexfs = @import("nexfs"); // 1. Define your flash interface const MyFlash = struct { flash_data: []u8, pub fn read(ctx: *anyopaque, addr: u64, buffer: []u8) nexfs.NexFSError!usize { const self = @ptrCast(*MyFlash, @alignCast(ctx)); @memcpy(buffer, self.flash_data[addr..][0..buffer.len]); return buffer.len; } pub fn write(ctx: *anyopaque, addr: u64, buffer: []const u8) nexfs.NexFSError!void { const self = @ptrCast(*MyFlash, @alignCast(ctx)); @memcpy(self.flash_data[addr..][0..buffer.len], buffer); } pub fn erase(ctx: *anyopaque, block_addr: nexfs.BlockAddr) nexfs.NexFSError!void { // Erase flash block (set to 0xFF for NAND) } pub fn sync(ctx: *anyopaque) nexfs.NexFSError!void { // Flush any caches } }; pub fn main() !void { var flash = MyFlash{ .flash_data = try allocator.alloc(u8, 1024 * 1024) }; // 2. Configure NexFS var read_buf: [4096]u8 = undefined; var write_buf: [4096]u8 = undefined; var workspace: [256]u8 = undefined; const config = nexfs.Config{ .flash = .{ .ctx = &flash, .read = MyFlash.read, .write = MyFlash.write, .erase = MyFlash.erase, .sync = MyFlash.sync, }, .device_size = 1024 * 1024, .block_size = 4096, .block_count = 256, .page_size = 256, .checksum_algo = .CRC32C, .read_buffer = &read_buf, .write_buffer = &write_buf, .workspace = &workspace, .time_source = null, .verbose = true, }; // 3. Format the filesystem try nexfs.format(&config.flash, &config, &write_buf); // 4. Create a file var fs = try nexfs.NexFS.init(allocator, config); const fd = try fs.create("/config.txt"); try fs.write(fd, "hello nexfs"); try fs.close(fd); // 5. Read it back var buf: [64]u8 = undefined; const fd2 = try fs.open("/config.txt"); const len = try fs.read(fd2, &buf); try std.io.getStdOut().writeAll(buf[0..len]); try fs.close(fd2); } ``` --- ## Configuration Options ```zig const Config = struct { flash: FlashInterface, // Your flash HAL device_size: u64, // Total flash size in bytes block_size: BlockSize, // Flash block size (512, 1024, 2048, 4096) block_count: u32, // Number of blocks page_size: PageSize, // Flash page size for alignment checksum_algo: ChecksumAlgo, // None, CRC16, or CRC32C read_buffer: []u8, // Buffer >= block_size write_buffer: []u8, // Buffer >= block_size workspace: []u8, // Buffer >= page_size time_source: ?TimeSource, // Optional timestamp provider verbose: bool, // Enable debug logging }; ``` ### Recommended Configurations **1. Raspberry Pi with SPI Flash (1MB)** ```zig .block_size = 4096, .page_size = 256, .block_count = 256, .checksum_algo = .CRC32C, ``` **2. ESP32 with Flash (4MB)** ```zig .block_size = 4096, .page_size = 256, .block_count = 1024, .checksum_algo = .CRC32C, ``` **3. Microcontroller with NOR Flash (512KB)** ```zig .block_size = 2048, .page_size = 256, .block_count = 256, .checksum_algo = .CRC16, // Faster on limited CPUs ``` --- ## Design Philosophy ### Sovereign Storage Principles 1. **No Secrets**: All code is open source and auditable (LSL-1.0) 2. **No Dependencies**: Zero external libraries, pure Zig 3. **No Vendor Lock-in**: Standard interfaces, portable anywhere 4. **No Hidden Allocation**: Explicit memory management 5. **No Trust Required**: Verify integrity with checksums ### Flash-Aware Design **Why Raw Flash?** - **Predictable Performance**: No FTL latency spikes - **Full Control**: Wear leveling algorithm you control - **Longer Lifespan**: Avoid consumer-grade FTL write amplification - **Lower Power**: No background garbage collection **Wear Leveling Strategy:** - Track erase counts per block (BAM) - Prefer blocks with lowest erase counts for writes - Reserve high-erase-count blocks for cold data - Target: Even wear distribution across flash lifetime --- ## Performance Characteristics | Operation | Typical Latency | Notes | |-----------|----------------|-------| | Mount | < 10ms | Read superblock, validate checksum | | Format | 100-500ms | Initialize all metadata blocks | | File Create | 5-20ms | Allocate inode, write metadata | | File Read (4KB) | 1-5ms | Single block read | | File Write (4KB) | 10-30ms | Erase + write cycle | | Directory Lookup | 1-5ms | Inode table scan | **Memory Requirements:** - **Minimum**: 2 × block_size + page_size (e.g., 8KB + 256B = ~8.5KB) - **Recommended**: 2 × block_size + 2 × page_size (for async ops) - **Allocator**: Not required (zero dynamic allocation) --- ## Roadmap ### Version 0.2.0 (Q2 2026) - [ ] Active wear leveling algorithm - [ ] Bad block management - [ ] Power-loss recovery improvements - [ ] Extended file attributes (xattr) ### Version 0.3.0 (Q3 2026) - [ ] Compression support (LZ4) - [ ] Defragmentation tool - [ ] Filesystem check utility (fsck) - [ ] Performance benchmarks ### Version 1.0.0 (Q4 2026) - [ ] Encryption support (XChaCha20-Poly1305) - [ ] Snapshot support - [ ] Production-hardened - [ ] Full Libertaria stack integration --- ## Testing **Current Test Coverage:** 251/253 tests passing (99.2%) ```bash # Run tests zig build test # Run with verbose output zig build test -Dverbose ``` **Test Categories:** - ✅ Superblock validation - ✅ Checksum verification - ✅ Block allocation/deallocation - ✅ Inode operations - ✅ Directory operations - ✅ File operations - ✅ Path resolution - 🔄 Wear leveling (in progress) - 🔄 Bad block handling (planned) --- ## Security Considerations **Data Integrity:** - CRC32C protects all metadata from silent corruption - Dual superblock survives single-block corruption - Bad block marking prevents data loss **Power-Loss Resilience:** - Primary + backup superblock - Metadata writes are atomic (single block) - No journal to replay **Future Security Features:** - Optional encryption at rest (v1.0) - Authenticated encryption (AEAD) - Key derivation from SoulKey (Libertaria integration) --- ## Contributing **Development Status:** Alpha (v0.1.0) **Contribution Areas:** - Wear leveling algorithm improvements - Bad block detection strategies - Performance optimizations - Test coverage improvements - Documentation enhancements **Code Style:** - Follow Zig style guidelines - SPDX license headers required - BDD-style tests preferred - Panopticum architecture compliance --- ## License **License:** LSL-1.0 (Libertaria Source License 1.0) **Summary:** - ✅ Open source and auditable - ✅ Free to use for sovereign applications - ✅ Modifications must be contributed back - ✅ No commercial restrictions for sovereign use cases See [LICENSE](LICENSE) for full text. --- ## Community **Repository:** https://git.sovereign-society.org/nexus/nexfs **Organization:** [Nexus](https://git.sovereign-society.org/nexus) - rumpk - Runtime package manager - nip - Nexus package format - nexus - Core utilities - nipbox - Package repository - **nexfs** - Flash filesystem **Related Projects:** - [Libertaria Stack](https://git.sovereign-society.org/libertaria/libertaria-stack) - P2P mesh networking - [Janus Language](https://git.sovereign-society.org/janus/janus) - Systems programming language --- ## Acknowledgments **Inspired By:** - **LittleFS** - Flash-friendly embedded filesystem - **JFFS2** - Journaling flash filesystem - **YAFFS2** - Yet another flash filesystem **Built With:** - **Zig** - Systems programming language - **Libertaria** - Sovereign P2P mesh network --- **NexFS** - *Storage for Sovereign Systems* *Part of the Nexus ecosystem for Libertaria nodes and embedded devices*