# Copyright (c) 2026 Nexus Foundation # Licensed under the Libertaria Sovereign License (LSL-1.0) # See legal/LICENSE_SOVEREIGN.md for details. # MARKUS MAIWALD (ARCHITECT) | VOXIS FORGE (AI) # Rumpk Layer 1: The Logic Core (Autonomous Immune System) {.push stackTrace: off, lineTrace: off.} import fiber except fiber_yield import ion import loader import fs/tar import fs/sfs import netswitch import ../libs/membrane/net_glue import ../libs/membrane/compositor var ion_paused*: bool = false var pause_start*: uint64 = 0 var matrix_enabled*: bool = false # --- CORE LOGGING --- proc console_write(p: pointer, len: csize_t) {.importc, cdecl.} proc kwrite*(p: pointer, len: csize_t) {.exportc, cdecl.} = if p != nil and len > 0: console_write(p, len) proc kprint*(s: cstring) {.exportc, cdecl.} = if s != nil: let length = len(s) if length > 0: kwrite(cast[pointer](s), csize_t(length)) proc kprint_hex*(n: uint64) {.exportc, cdecl.} = const hex_chars = "0123456789ABCDEF" var buf: array[18, char] buf[0] = '0' buf[1] = 'x' for i in 0..15: let nibble = (n shr (60 - (i * 4))) and 0xF buf[i+2] = hex_chars[nibble] console_write(addr buf[0], 18) proc kprintln*(s: cstring) {.exportc, cdecl.} = kprint(s); kprint("\n") proc write*(fd: cint, p: pointer, len: csize_t): csize_t {.exportc, cdecl.} = console_write(p, len) return len # Wrapper for VFS write to handle stdout/stderr proc wrapper_vfs_write(fd: int32, buf: pointer, count: uint64): int64 {.cdecl.} = if fd == 1 or fd == 2: console_write(buf, csize_t(count)) return int64(count) return ion_vfs_write(fd, buf, count) # ========================================================= # Fiber Management (Forward Declared) # ========================================================= var fiber_ion: FiberObject var fiber_nexshell: FiberObject var fiber_ui: FiberObject var fiber_subject: FiberObject var fiber_watchdog: FiberObject var fiber_compositor: FiberObject var fiber_netswitch: FiberObject # Phase 36.2: Network Traffic Cop # Phase 29: Dynamic Worker Pool (The Hive) const MAX_WORKERS = 8 var worker_pool: array[MAX_WORKERS, FiberObject] var worker_stacks: array[MAX_WORKERS, array[8192, uint8]] var worker_active: array[MAX_WORKERS, bool] var next_worker_id: uint64 = 100 # Start worker IDs at 100 var subject_loading_path: string = "bin/nipbox" proc subject_fiber_entry() {.cdecl.} = ## The Sovereign Container for Userland Consciousness. ## This loop persists across program reloads. kprintln("[Subject] Fiber Entry reached.") while true: kprint("[Subject] Attempting to load: ") kprintln(cstring(subject_loading_path)) let entry = kload(subject_loading_path) if entry != 0: kprintln("[Subject] Consciousness Transferred.") rumpk_enter_userland(entry) else: kprint("[Subject] Failed to load: ") kprintln(cstring(subject_loading_path)) kprintln("[Subject] Pausing for Rebirth.") fiber.switch(addr fiber_ion) # Emergency yield to master # --- STACK ALLOCATIONS --- var stack_ion {.align: 4096.}: array[4096, uint8] var stack_nexshell {.align: 4096.}: array[4096, uint8] var stack_ui {.align: 4096.}: array[32768, uint8] var stack_subject {.align: 4096.}: array[32768, uint8] var stack_watchdog {.align: 4096.}: array[4096, uint8] var stack_netswitch {.align: 4096.}: array[8192, uint8] # Phase 36.2 var stack_compositor {.align: 4096.}: array[128 * 1024, uint8] # Phase 31: Memory Manager (The Glass Cage) proc mm_init() {.importc, cdecl.} proc mm_enable_kernel_paging() {.importc, cdecl.} # HAL Framebuffer imports (Phase 26: Visual Cortex) proc fb_kern_get_addr(): uint64 {.importc, cdecl.} # --- INITRD SYMBOLS --- var binary_initrd_tar_start {.importc: "_initrd_start".}: char var binary_initrd_tar_end {.importc: "_initrd_end".}: char # ========================================================= # Shared Infrastructure # ========================================================= const SYSTABLE_BASE = 0x83000000'u64 # Global Rings (The Pipes - L0 Physics) var guest_rx_hal: HAL_Ring[IonPacket] var guest_tx_hal: HAL_Ring[IonPacket] var guest_event_hal: HAL_Ring[IonPacket] var guest_cmd_hal: HAL_Ring[CmdPacket] # Shared Channels (The Valves - L1 Logic) # Shared Channels var chan_rx*: SovereignChannel[IonPacket] var chan_tx*: SovereignChannel[IonPacket] var chan_event*: SovereignChannel[IonPacket] var chan_cmd*: SovereignChannel[CmdPacket] var chan_compositor_input*: SovereignChannel[IonPacket] # chan_input is now imported from ion.nim! proc ion_push_stdin*(p: pointer, len: csize_t) {.exportc, cdecl.} = if chan_input.ring == nil: return var pkt = ion_alloc() if pkt.data == nil: return let to_copy = min(int(len), 2048) copyMem(pkt.data, p, to_copy) pkt.len = uint16(to_copy) kprintln("[Kernel] Input packet pushed to ring") # Phase 35d: Route to Compositor FIRST if chan_compositor_input.ring != nil: chan_compositor_input.send(pkt) else: # Fallback to direct routing if compositor not active chan_input.send(pkt) proc get_ion_load(): int = ## Calculate load of the Command Ring (The Heartbeat of the NPLs) let head = guest_cmd_hal.head let tail = guest_cmd_hal.tail let mask = guest_cmd_hal.mask return int((head - tail) and mask) proc rumpk_yield_internal() {.cdecl, exportc.} # HAL Driver API proc hal_io_init() {.importc, cdecl.} proc virtio_net_poll() {.importc, cdecl.} proc virtio_net_send(data: pointer, len: uint32) {.importc, cdecl.} proc rumpk_yield_guard() {.importc, cdecl.} proc virtio_blk_read(sector: uint64, buf: pointer) {.importc, cdecl.} proc virtio_blk_write(sector: uint64, buf: pointer) {.importc, cdecl.} proc ion_free_raw(id: uint16) {.importc, cdecl.} proc nexshell_main() {.importc, cdecl.} proc ui_fiber_entry() {.importc, cdecl.} proc rumpk_halt() {.importc, cdecl, noreturn.} proc compositor_fiber_entry() {.cdecl.} = kprintln("[Compositor] Fiber Entry reached.") while true: compositor.compositor_step() # High frequency yield (120Hz goal) rumpk_yield_internal() proc get_now_ns(): uint64 = proc rumpk_timer_now_ns(): uint64 {.importc, cdecl.} return rumpk_timer_now_ns() proc fiber_yield*() {.exportc, cdecl.} = rumpk_yield_internal() proc fiber_sleep*(ms: int) {.exportc, cdecl.} = let now = get_now_ns() current_fiber.sleep_until = now + uint64(ms) * 1000000'u64 fiber_yield() proc rumpk_yield_internal() {.cdecl, exportc.} = let now = get_now_ns() # Normal Round Robin logic with Sleep Check var next_fiber: Fiber = nil if current_fiber == addr fiber_ion: next_fiber = addr fiber_nexshell elif current_fiber == addr fiber_nexshell: next_fiber = addr fiber_subject elif current_fiber == addr fiber_subject: next_fiber = addr fiber_watchdog elif current_fiber == addr fiber_watchdog: next_fiber = addr fiber_ion else: next_fiber = addr fiber_ion # Skip sleeping fibers var found = false for _ in 0..6: # Max 6 check if next_fiber != nil and now >= next_fiber.sleep_until: found = true break # Move to next in sequence if next_fiber == addr fiber_ion: next_fiber = addr fiber_nexshell elif next_fiber == addr fiber_nexshell: next_fiber = addr fiber_subject elif next_fiber == addr fiber_subject: next_fiber = addr fiber_watchdog elif next_fiber == addr fiber_watchdog: next_fiber = addr fiber_ion else: next_fiber = addr fiber_ion # Force found = true for now found = true if found and next_fiber != current_fiber: kprint("[Sched] "); kprint(current_fiber.name); kprint(" -> "); kprintln(next_fiber.name) switch(next_fiber) elif not found: asm "csrsi sstatus, 2" asm "wfi" # ========================================================= # ION Intelligence Fiber (Core System Supervisor) # ========================================================= proc ion_fiber_entry() {.cdecl.} = hal_io_init() kprintln("[ION] Fiber 1 Reporting for Duty.") while true: var cmd: CmdPacket while chan_cmd.recv(cmd): case cmd.kind: of uint32(CmdType.CMD_GPU_MATRIX): matrix_enabled = (cmd.arg > 0) of uint32(CmdType.CMD_SYS_EXIT): kprintln("[Kernel] Subject Exited. Respawning...") subject_loading_path = "bin/nipbox" init_fiber(addr fiber_subject, subject_fiber_entry, addr stack_subject[0], stack_subject.len) of uint32(CmdType.CMD_ION_STOP): ion_paused = true pause_start = get_now_ns() of uint32(CmdType.CMD_ION_START): ion_paused = false of uint32(CmdType.CMD_NET_TX): let args = cast[ptr NetArgs](cmd.arg) virtio_net_send(cast[ptr UncheckedArray[byte]](args.buf), uint32(args.len)) of uint32(CmdType.CMD_NET_RX): let args = cast[ptr NetArgs](cmd.arg) virtio_net_poll() var pkt: IonPacket if chan_rx.recv(pkt): let copy_len = if uint64(pkt.len) > args.len: args.len else: uint64(pkt.len) copyMem(cast[pointer](args.buf), cast[pointer](pkt.data), copy_len) args.len = copy_len ion_free_raw(pkt.id) else: args.len = 0 of uint32(CmdType.CMD_BLK_READ): let args = cast[ptr BlkArgs](cmd.arg) virtio_blk_read(args.sector, cast[pointer](args.buf)) of uint32(CmdType.CMD_BLK_WRITE): let args = cast[ptr BlkArgs](cmd.arg) virtio_blk_write(args.sector, cast[pointer](args.buf)) of uint32(CmdType.CMD_FS_WRITE): let args = cast[ptr FileArgs](cmd.arg) sfs_write_file(cast[cstring](args.name), cast[cstring](args.data), int(args.len)) sfs_sync_vfs() of uint32(CmdType.CMD_FS_READ): let args = cast[ptr FileArgs](cmd.arg) let bytes_read = sfs_read_file(cast[cstring](args.name), cast[pointer](args.data), int(args.len)) args.len = uint64(bytes_read) else: discard fiber_yield() # Hardware Ingress (Zig -> Nim) proc ion_get_virt(id: uint16): pointer {.importc, cdecl.} proc ion_ingress*(id: uint16, len: uint16) {.exportc, cdecl.} = let data = ion_get_virt(id) var pkt = IonPacket(data: cast[ptr UncheckedArray[byte]](data), len: len, id: id) chan_rx.send(pkt) # Panic Handler proc nimPanic(msg: cstring) {.exportc: "panic", cdecl, noreturn.} = kprintln("\n[PANIC] ") kprintln(msg) rumpk_halt() # Include Watchdog Logic include watchdog # ========================================================= # Generic Worker Trampoline # ========================================================= proc worker_trampoline() {.cdecl.} = let user_fn = cast[proc(arg: uint64) {.cdecl.}](current_fiber.user_entry) if user_fn != nil: user_fn(current_fiber.user_arg) for i in 0.. 0: copyMem(cast[pointer](a1), cast[pointer](pkt.data), int(n)) ion_free_raw(pkt.id) return n else: current_fiber.wants_yield = true return 0 if (current_fiber.promises and PLEDGE_RPATH) == 0: return cast[uint](-1) return uint(ion_vfs_read(int32(a0), cast[pointer](a1), uint64(a2))) of 0x204: # WRITE # Bypass optimization for now to test stability return uint(ion_vfs_write(int32(a0), cast[pointer](a1), uint64(a2))) of 0x300: # SURFACE_CREATE return uint(compositor.create_surface(int(a0), int(a1))) of 0x301: # SURFACE_FLIP return 0 of 0x302: # SURFACE_GET_PTR return cast[uint](compositor.hal_surface_get_ptr(int32(a0))) of 0x500: # SPAWN return uint(k_spawn(cast[pointer](a0), uint64(a1))) of 0x501: # JOIN return uint(k_join(uint64(a0))) of 0x100: # YIELD # Deferred yield: Set flag, yield happens after trap return current_fiber.wants_yield = true return 0 of 0x220: # BLK_READ - Raw Sector Read (Block Valve) # a0 = sector, a1 = buffer pointer (userland), a2 = count (sectors) if (current_fiber.promises and PLEDGE_RPATH) == 0: return cast[uint](-1) var buf: array[512, byte] virtio_blk_read(uint64(a0), addr buf[0]) copyMem(cast[pointer](a1), addr buf[0], 512) return 512 of 0x221: # BLK_WRITE - Raw Sector Write (Block Valve) # a0 = sector, a1 = buffer pointer (userland), a2 = count (sectors) if (current_fiber.promises and PLEDGE_WPATH) == 0: return cast[uint](-1) virtio_blk_write(uint64(a0), cast[ptr byte](a1)) return 512 of 0x222: # BLK_SYNC - Flush (Block Valve) # VirtIO block is synchronous, so this is a no-op for now return 0 of 0: # EXIT fiber_yield() return 0 else: return 0 proc kmain() {.exportc, cdecl.} = kprintln("\n\n") kprintln("╔═══════════════════════════════════════╗") kprintln("║ NEXUS RUMK v1.1 - SOVEREIGN ║") kprintln("╚═══════════════════════════════════════╝") kprint("[Kernel] current_fiber Addr: "); kprint_hex(cast[uint64](addr current_fiber)); kprintln("") kprint("[Kernel] stack_subject Addr: "); kprint_hex(cast[uint64](addr stack_subject[0])); kprintln("") kprint("[Kernel] GP: "); var gp: uint64; {.emit: "asm volatile(\"mv %0, gp\" : \"=r\"(`gp`));".}; kprint_hex(gp); kprintln("") ion_pool_init() # Phase 31: Memory Manager (The Glass Cage) mm_init() mm_enable_kernel_paging() # Diagnostic: Check stvec var stvec_val: uint64 {.emit: "asm volatile(\"csrr %0, stvec\" : \"=r\"(`stvec_val`));".} kprint("[Kernel] stvec: ") kprint_hex(stvec_val) kprintln("") # Phase 37 Fix: Enable sstatus.SUM (Supervisor User Memory access) # This allows the kernel (S-mode) to read/write pages with PTE_U (User bit). {.emit: "asm volatile(\"csrs sstatus, %0\" : : \"r\"(1L << 18));".} ion_init_input() hal_io_init() vfs_init(addr binary_initrd_tar_start, addr binary_initrd_tar_end) sfs_mount() sfs_sync_vfs() let sys = cast[ptr SysTable](SYSTABLE_BASE) sys.fn_vfs_open = ion_vfs_open sys.fn_vfs_read = ion_vfs_read sys.fn_vfs_list = ion_vfs_list sys.fn_vfs_write = wrapper_vfs_write sys.fn_vfs_close = ion_vfs_close sys.fn_log = cast[pointer](kwrite) sys.fn_pledge = k_pledge # fn_yield removed - yield is now syscall 0x100 # Phase 35e: Crypto HAL integration proc hal_crypto_siphash(key: ptr array[16, byte], data: pointer, len: uint64, out_hash: ptr array[16, byte]) {.importc, cdecl.} proc hal_crypto_ed25519_verify(sig: ptr array[64, byte], msg: pointer, len: uint64, pk: ptr array[32, byte]): bool {.importc, cdecl.} sys.fn_siphash = hal_crypto_siphash sys.fn_ed25519_verify = hal_crypto_ed25519_verify # GPU disabled temporarily until display works # proc virtio_gpu_init(base: uint64) {.importc, cdecl.} # proc matrix_init() {.importc, cdecl.} # kprintln("[Kernel] Scanning for VirtIO-GPU...") # for i in 1..8: # let base_addr = 0x10000000'u64 + (uint64(i) * 0x1000'u64) # virtio_gpu_init(base_addr) # matrix_init() # Move Rings to Shared Memory (User Accessible) # 0x83001000 onwards let ring_rx_ptr = cast[ptr HAL_Ring[IonPacket]](SYSTABLE_BASE + 0x1000) let ring_tx_ptr = cast[ptr HAL_Ring[IonPacket]](SYSTABLE_BASE + 0x2000) let ring_event_ptr = cast[ptr HAL_Ring[IonPacket]](SYSTABLE_BASE + 0x3000) let ring_cmd_ptr = cast[ptr HAL_Ring[CmdPacket]](SYSTABLE_BASE + 0x4000) # Init Shared Rings ring_rx_ptr.head = 0; ring_rx_ptr.tail = 0; ring_rx_ptr.mask = 255 ring_tx_ptr.head = 0; ring_tx_ptr.tail = 0; ring_tx_ptr.mask = 255 ring_event_ptr.head = 0; ring_event_ptr.tail = 0; ring_event_ptr.mask = 255 ring_cmd_ptr.head = 0; ring_cmd_ptr.tail = 0; ring_cmd_ptr.mask = 255 # Connect Channels chan_rx.ring = ring_rx_ptr chan_tx.ring = ring_tx_ptr chan_event.ring = ring_event_ptr chan_cmd.ring = ring_cmd_ptr # Connect SysTable sys.s_rx = ring_rx_ptr sys.s_tx = ring_tx_ptr sys.s_event = ring_event_ptr sys.s_cmd = ring_cmd_ptr let ring_input_ptr = cast[ptr HAL_Ring[IonPacket]](SYSTABLE_BASE + 0x5000) ring_input_ptr.head = 0; ring_input_ptr.tail = 0; ring_input_ptr.mask = 255 chan_input.ring = ring_input_ptr sys.s_input = ring_input_ptr sys.magic = 0x4E585553 # Removed stale BSS assignments (sys.s_rx = ...) # Phase 36.2: Initialize Network Membrane BEFORE userland starts netswitch_init() netswitch_attach_systable(sys) # Framebuffer info sys.fb_addr = fb_kern_get_addr() sys.fb_width = 1920 sys.fb_height = 1080 sys.fb_stride = 1920 * 4 sys.fb_bpp = 32 sys.fn_yield = rumpk_yield_guard kprintln("[Kernel] Spawning System Fibers...") fiber_ion.name = "ion" init_fiber(addr fiber_ion, ion_fiber_entry, addr stack_ion[0], sizeof(stack_ion)) fiber_compositor.name = "compositor" init_fiber(addr fiber_compositor, compositor_fiber_entry, addr stack_compositor[0], sizeof(stack_compositor)) fiber_nexshell.name = "nexshell" init_fiber(addr fiber_nexshell, nexshell_main, addr stack_nexshell[0], sizeof(stack_nexshell)) # Phase 31: Page Table root for worker isolation proc mm_create_worker_map(stack_base: uint64, stack_size: uint64, packet_addr: uint64): uint64 {.importc, cdecl.} fiber_subject.name = "subject" init_fiber(addr fiber_subject, subject_fiber_entry, addr stack_subject[0], sizeof(stack_subject)) fiber_subject.satp_value = mm_create_worker_map(cast[uint64](addr stack_subject[0]), uint64(sizeof(stack_subject)), 0x83000000'u64) fiber_watchdog.name = "watchdog" init_fiber(addr fiber_watchdog, watchdog_loop, addr stack_watchdog[0], sizeof(stack_watchdog)) # Phase 36.2: NetSwitch Fiber (Traffic Cop) fiber_netswitch.name = "netswitch" init_fiber(addr fiber_netswitch, fiber_netswitch_entry, addr stack_netswitch[0], sizeof(stack_netswitch)) kprintln("[Kernel] Enabling Supervisor Interrupts (SIE)...") asm "csrsi sstatus, 2" kprintln("[Kernel] All Systems Go. Entering Autonomous Loop.") switch(addr fiber_ion) {.pop.}